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STATISTICAL INFERENCE 

 
Source: Doane and Seward - Applied Statistics in Business and Economics 

Main point: How to use the sample to conclude about unknown aspects of the 
population 

Our first topic will be how to summarize the information included in a data collection 

(what is usually known as descriptive statistics or data exploratory analysis) 



 

 2 

 

Mains points to take into consideration: 

 Location  

 Variability 

 Measures of the possible relationship among the variables in our data collection 

Sometimes we have a large number of variables in our data collection and we need 

to summarize the information underlying a few main points. One of the possible 
techniques is Principal Components Analysis (PCA). 

Some points to look at before initializing  any analysis: 

 Data Types – Categorical versus Numerical 

 Level of measurement  of each variable – Most of the time in actuarial problem 
we use quantitative variables measured in a ratio scale but … there are 
exceptions 
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Data Types – Categorical versus Numerical 

 

 

Source: Doane and Seward - Applied Statistics in Business and Economics 
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How to determine the level of measurement? 

 
Source: Doane and Seward - Applied Statistics in Business and Economics 
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Location and variability measures  (counterpart of population measures) 
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Why to divide by 1n  instead of n  (to be discussed later)? 

 Standard deviation 2ss   
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Association measures  (counterpart of population measures) 
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 Spearman´s rank correlation coefficient, Sr   

Replace each value ix  by its rank,  ir x , and do the same to iy , obtaining  ir y . 
Spearman´s rank correlation coefficient is computed as Pearson´s correlation 
between  ir x  and  ir y . 
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Association and causation 

 Association is different from causation 

 Association - A relationship between two, or more, variables 

 Correlation – Similar to association, depending on how correlation is 
computed. Pearson´s correlation → linear association 

 Causation - Changes in one variable causes changes in the other. 
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Association Measures – Example 

Manufacturers of perishable foods often use preservatives to retard spoilage. One 
concern is that too much preservative will change the flavor of the food. Suppose an 
experiment is conducted using samples of a food product with varying amounts of 
preservative added. Both length of time until the food shows signs of spoiling and a 
taste rating are recorded for each sample. The taste rating is the average rating for 
three tasters, each of whom rates each sample on a scale from 1 (good) to 5 (bad). 
Twelve sample measurements are shown in the following table. 

 1 2 3 4 5 6 7 8 9 10 11 12 
Nº Days 30 47 26 94 67 83 36 77 43 109 56 70 
Taste  4.3 3.6 4.5 2.8 3.3 2.7 4.2 3.9 3.6 2.2 3.1 2.9 

Compute Pearson’s and Spearman’s correlation coefficient and comment. 
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Association Measures – Example (solution) 

> #### Correlation coefficients example 
> x=c(30,47,26,94,67,83,36,77,43,109,56,70) 
> y=c(4.3,3.6,4.5,2.8,3.3,2.7,4.2,3.9,3.6,2.2,3.1,2.9) 
>  
> # Pearson's coefficient 
> cor.xy=cor(x,y)    # Pearson's coefficient 
>  
> avg.x=mean(x); sd.x=sd(x) 
> avg.y=mean(y); sd.y=sd(y) 
> cbind(avg.x,avg.y,sd.x,sd.y,cor.xy) 
     avg.x avg.y     sd.x     sd.y     cor.xy 
[1,]  61.5 3.425 26.29034 0.714938 -0.8771227 
> # just to check formula 
> cov.xy=cov(x,y) 
> cov.xy/(sd.x*sd.y) # Pearson's coefficient 
[1] -0.8771227 
>  
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Association Measures – Example (solution) 

> # Spearman's coefficient 
> cor(rank(x),rank(y)) # Spearman's coefficient 
[1] -0.8791607 
> rank(x); rank(y) 
 [1]  2  5  1 11  7 10  3  9  4 12  6  8 
 [1] 11.0  7.5 12.0  3.0  6.0  2.0 10.0  9.0  7.5  1.0  5.0  4.0 
> # Alternative computation – Approximate value since we have one 
tie 
> d=rank(x)-rank(y); n=12; 1-6*sum(d^2)/(n*(n^2-1))  
[1] -0.8758741 
> 
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PRINCIPAL COMPONENTE ANALYSIS (PCA) 

 

Motivation: A financial analyst is interested in determining the financial health of 

firms in a given industry. Research studies have identified a number of financial 

ratios (say about 120) that can be used for such a purpose. Obviously, it would be 

extremely taxing to interpret the 120 pieces of information for assessing the 

financial health of firms. However, the analyst’s task would be simplified if these 

120 ratios could be reduced to a few indices (say about 3), which are linear 
combinations of the original 120 ratios.  

Main purpose of PCA: To capture the main patterns explaining the variability in a 

data set using a small number of new variables that are uncorrelated linar 

combinations of the original variables keeping the loss of information under control. 
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PCA – Introduction 

 PCA is one of the multivariate exploratory data analysis techniques. It can 
be used by itself to reduce the dimension of a data set or as an auxiliary 
technique for other approaches. 

 The new variables to be created are: 

 Linear combinations of the original variables 

 The linear combinations are uncorrelated with each other 

 The maximum number of new variables is equal to the number of 
original variables (assuming that there is no perfect correlation 
among the original variables) 

 Let us first consider a very simple example: 2p   variables, 1X  and 2X  
and 12n   observations for each variable (data are presented in Table 1) 
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PCA – A simple example 

Table1 

obs 1 2 3 4 5 6 7 8 9 10 11 12 

1X  16 12 13 11 10 9 8 7 5 3 2 0 

2X  8 10 6 2 8 -1 4 6 -3 -1 -3 0 
 

Compute S , the covariance matrix between 1X  and 2X . 
2
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 The total variance is then 
2 2
1 2 11 22 23.09091 21.09091 44.18182s s s s        
2
1 23.09091s   (the variance of the first variable) represents 52.26% of this 

total while 2
2 21.09091s   represents 47.74%. 
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PCA – A simple example (cont) 

 The first step is to replace the original variables, 1X  and 2X , by 2 linear 

combinations of them, 1Y  and 2Y , in such a way that the first one will cover most 
of the varability (most of the total variance). 
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As it is obvious, if we multiply all the coefficients ije  by a constant 1k  , 
1

2
Ys  and 

2

2
Ys  will increase (and if  both will decrease). So to keep the scale 

constant, we need to introduce a scale constraint before maximizing. The 
constraint is  2 2

1 2 1i ie e  . 

 The second step will be to discuss the data reduction: Is it acceptable to use 
less linear combinations (Y variables) than the original number of variables? 

 Let us, first, discuss the first step. 
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PCA – A simple example (cont) 

The problem: 
1

2
Ymax s  subject to 2 2

1 2 1i ie e  . 

We need to maximize the Lagrangean function 
2 2 2 2
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PCA – A simple example (cont) 

Using some matricial notation and defining 11
1
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and se can rewrite the problem as 

max    1 1 1 1 1 1 1 11 1T T T TL S I S      e e e e e e e e  
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PCA – A simple example (cont) 

 

   1 1 1 1 1 1 1 11 1T T T TL S I S      e e e e e e e e  

1 1 1
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And then we must solve 1( )S I e 0 knowing that 1 1 1T e e  ( the same result 

can be obtained without matrix notation). This is a well known problem in linear 

algebra: Finding the eigenvalues and the eigen vectors of matrix S  
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PCA – Eigenvalues and eigenvector of matrix S  

Solve 1( )S I e 0 subject to 1 1 1T e e  

As we have a homogeneous system of equations the trivial solution 1 e 0  is 

always possible but irrelevant. So, we must guarantee that the determinant of the 

system is 0, i.e.,   0S I  , to get a relevant solution. 

This equation is a polynomial of order k  (the number of original variables) and 

therefore has k  roots (the eigenvalues of S ), 1 2 0k     L , as S  is 

positive definite matrix (assuming that none of the variables is a linear 
combination of the others).  

For each root i  we get the corresponding eigenvector, ie , normalized using  

1T
i i e e . 
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PCA – Eigenvalues and eigenvector of matrix S  (cont) 

Let us consider the largest eigenvalue, 1 . As it is a solution of the system we 

have 

1 1

1 1

( )

1T

S I 
 

e 0

e e
 

Pre-multiplying the first equation by 1
Te  originates 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) 0T T T T T TS I S I S          e e e 0 e e e e e e e e  

as 1 1 1T e e .   

We get 1 1 1
TS e e  (remember that భ

ଶ
ଵ
்

ଵ ) and if we repeat the process for 

the second largest eigenvalue we get  2 2 2
TS e e  and so on. The variance of the 

j-th linear combination  is equal to the j-th eigenvalue.  
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PCA – A simple example (cont) 

Back to our simple example we define the polynomial as  

   2
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PCA – A simple example (cont) 

For each eigenvalue we can choose the positive or the negative root to define 1ie  

as the results are equivalent.  

1st eigenvalue → ଵ   (87.31% of total variance) 

   ଵ
்     positive root or 

   ଵ
்     negative root 

2nd eigenvalue → ଶ   (12.69% of total variance) 

   ଶ
்     positive root or 

   ଶ
்     negative root 

To get the solution obtained using R, let us choose the negative root for the 1st 

eigen value and the positive root for the 2nd eigen value 
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PCA – A simple example (cont) 

At this stage step 1 is solved and the principal components (the linear combinations 

of the original variables 1X  and 2X ) are found. 

For observation  we get  

ଵ

ଶ

ଵଵ ଵଶ

ଶଵ ଶଶ

ଵ

ଶ

ଵ

ଶ
 

ଵ ଵ ଶ

ଶ ଵ ଶ
 

 

Instead of representing (plotting) each observation using the original variables      

( 1X  and 2X ) we can use the principal components ( 1e  and 2e ) as the new 

coordinates.  
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PCA – A simple example (cont) 

  
 

 1st  panel: observations (a to l), centering effect (dashed lines) and PC (red) 

 2nd panel: centered observations (a to l), and PC (red) with unit and direction. 
The direction of each axis is arbitrary (remember that we can choose the 
negative or the positive root). 

 3rd panel: observations using the new axes system (PC).  
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PCA 

Two more definitions can be useful: 

 Loadings: different definitions appear in the litterature but the most commom – 
also called standardized loadings – is the correlation coefficient between each PC 

and each original variable ij
ij i

j

w
l

s
  where ijl  stand for the loading of the jth 

variable on PC i , ijw  is the weight , js  the standard deviation of the j-th variable and 

i  the eigenvalue (variance) associated to the i-th PC.  

 Scores: the coordinates of each observation in terms of the principal components 
(see the right panel on previous slide) 

Data reduction: Is the first PC (or how many PC are) enough to represent the data 
set? The answer depends on: 

 How much variability (% of total variability) is captured by the first PCs. 

 How relevant is the loss of information for the problem under analysis. 

Before addressing this point let’s see how to use R to analyze the first example: 
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PCA – Using  R – A simple example 
> x1=c(16,12,13,11,10,9,8,7,5,3,2,0)  
> x2=c(8,10,6,2,8,-1,4,6,-3,-1,-3,0)  
> x=cbind(x1,x2) 
>  
> ### Using eigenvalues and eigenvectors - centered only 
> x1c=(x1-mean(x1)); x2c=(x2-mean(x2)) 
> Xc=cbind(x1c,x2c) 
> S=(1/(length(x1c)-1))*(t(Xc)%*%Xc); S  # covariance matrix 
         x1c      x2c 
x1c 23.09091 16.45455 
x2c 16.45455 21.09091 
> out=eigen(S); out 
eigen() decomposition 
$`values` 
[1] 38.575813  5.606005 

$vectors 
           [,1]       [,2] 
[1,] -0.7282381  0.6853242 
[2,] -0.6853242 -0.7282381 
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PCA – Using  R – A simple example 
> cbind(out$values[1]/sum(out$values),out$values[2]/sum(out$values)) 
          [,1]      [,2] 
[1,] 0.8731151 0.1268849 
>  
> ### Using prcomp function (other solutions are available in R) 
> out1=prcomp(x,center=T) 
> out1 # eigenvalues are the squares of st. dev. 
Standard deviations (1, .., p=2): 
[1] 6.210943 2.367700 
 
Rotation (n x k) = (2 x 2): 
          PC1        PC2 
x1 -0.7282381  0.6853242 
x2 -0.6853242 -0.7282381 
> summary(out1) 
Importance of components: 
                          PC1    PC2 
Standard deviation     6.2109 2.3677 
Proportion of Variance 0.8731 0.1269 
Cumulative Proportion  0.8731 1.0000 
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PCA – Using  R – A simple example 
 
> out1$x          # scores 
             PC1        PC2 
 [1,] -9.2525259  1.8414027 
 [2,] -7.7102217 -2.3563703 
 [3,] -5.6971632  1.2419065 
 [4,] -1.4993902  2.7842106 
 [5,] -4.8830971 -2.2705423 
 [6,]  2.0130586  3.5982767 
 [7,] -0.6853242 -0.7282381 
 [8,] -1.3277344 -2.8700386 
 [9,]  6.2966594  2.3134563 
[10,]  6.3824874 -0.5136683 
[11,]  8.4813738  0.2574838 
[12,]  7.8818776 -3.2978790 
> out1$rotation   # weights, eigen vectors 
          PC1        PC2 
x1 -0.7282381  0.6853242 
x2 -0.6853242 -0.7282381 
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PCA – Using  R – A simple example 
> cor(x,out1$x)   # loadings 
          PC1        PC2 
x1 -0.9412618  0.3376776 
x2 -0.9268425 -0.3754503 
 

or, using the formula, ij
ij i

j

w
l

s
  

  
> # using the formula instead of the correlation 
> z.c=rbind(out1$sdev,out1$sdev) 
> sd.c=c(sd(x1),sd(x2)); sd.c=cbind(sd.c,sd.c) 
> l=out1$rotation*z.c/sd.c; l  # loadings 
          PC1        PC2 
x1 -0.9412618  0.3376776 
x2 -0.9268425 -0.3754503 
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PCA – Some issues 

4 issues need to be briefly discussed: 

1. In addition to centering (mean correct) should we scale the variables? 

2. Number of principal components to extract 

3. How to interpret principal components 

4. Use of principal component scores 

 

A new example – Food price index (Sharma) – will help to clarify these issues.  

The average price (cents per pound – 1973) of five (just to keep things simple) 
food items  are known for 23 US cities. Our main objective is to form a price index 
(like the Consumer Price Index) using PCA. 

The data is presented in the R program: 5 food items and 23 cities 

After reading the data set, our next task is to prerform a PCA as we did before 
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PCA - Example 2 – Food price index 

 First step → reading the data set  
> dta=read.csv("E:/Risk Models 2018/food price index.csv",header=T,sep=",") 
> dta     # Check input 
            City Bread Burger Milk Oranges Tomatoes 
1        Atlanta  24.5   94.5 73.9    80.1     41.6 
2      Baltimore  26.5   91.0 67.5    74.6     53.3 
3         Boston  29.7  100.8 61.4   104.0     59.6 
4        Buffalo  22.8   86.6 65.3   118.4     51.2 
5        Chicago  26.7   86.7 62.7   105.9     51.2 
6     Cincinnati  25.3  102.5 63.3    99.3     45.6 
7      Cleveland  22.8   88.8 52.4   110.9     46.8 
8         Dallas  23.3   85.5 62.5   117.9     41.8 
9        Detroit  24.1   93.7 51.5   109.7     52.4 
10      Honolulu  29.3  105.9 80.2   133.2     61.7 
11       Houston  22.3   83.6 67.8   108.6     42.4 
12   Kansas City  26.1   88.9 65.4   100.9     43.2 
13   Los Angeles  26.9   89.3 56.2    82.7     38.4 
14     Milwaukee  20.3   89.6 53.8   111.8     53.9 
15   Minneapolis  24.6   92.2 51.9   106.0     50.7 
16      New York  30.8  110.7 66.0   107.3     62.6 
17  Philadelphia  24.5   92.3 66.7    98.0     61.7 
18    Pittsburgh  26.2   95.4 60.2   117.1     49.3 
19     St. Louis  26.5   92.4 60.8   115.1     46.2 
20     San Diego  25.5   83.7 57.0    92.8     35.4 
21 San Francisco  26.3   87.1 58.3   101.8     41.5 
22       Seattle  22.5   77.7 62.0    91.1     44.9 
23 Washington DC  24.2   93.8 66.0    81.6     46.2 
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PCA - Example 2 – Food price index 

 Second step → PCA  using prcomp function (other solutions are available) 
 

> attach(dta) 
> x=cbind(Bread,Burger,Milk,Oranges,Tomatoes) 
> out1=prcomp(x, center=T) 
> out1 
Standard deviations: 
[1] 14.798604  9.577221  6.136994  4.561857  1.740468 
 
Rotation: 
                PC1        PC2         PC3         PC4         PC5 
Bread    0.02848905  0.1653211 -0.02135748  0.18972574 -0.96716354 
Burger   0.20012240  0.6321849 -0.25420475  0.65862454  0.24877074 
Milk     0.04167230  0.4421503  0.88874949 -0.10765906  0.03606094 
Oranges  0.93885906 -0.3143547  0.12135003  0.06904699 -0.01521357 
Tomatoes 0.27558389  0.5279160 -0.36100184 -0.71684022 -0.03429221 
 > summary(out1) 
Importance of components: 
                           PC1    PC2    PC3     PC4     PC5 
Standard deviation     14.7986 9.5772 6.1370 4.56186 1.74047 
Proportion of Variance  0.5884 0.2464 0.1012 0.05591 0.00814 
Cumulative Proportion   0.5884 0.8348 0.9359 0.99186 1.00000 
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PCA - Scaling or not scaling the variables 

As we can see PC1 is very much affected by the variable Oranges. This is partialy 
due to the fact that the variability associated with this variable is much higher 
than the variability associated with the other variables (see standard deviations). 

If we do not want that the variability of each variable influences the output we 
can scale the variables (divide by the standard deviation) – we will analyze the 
correlation matrix instead of the covariance matrix. 

The main point to think about before scaling or not scaling the variables is if we 
want to give the same a priori weight to each variable or not. If so, scale the 
variables. 

To use scaled variables we can scale them before performing PCA or just replace 
out1=prcomp(x,center=T) by out1=prcomp(x,center=T,scale=T) 
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PCA - Example 2 – Food price index 

> out2=prcomp(x, center=T,scale=T) 
> out2 
Standard deviations: 
[1] 1.5564279 1.0510352 0.8593489 0.7025748 0.4906784 
 
Rotation: 
               PC1         PC2         PC3         PC4          PC5 
Bread    0.4961487 -0.30861972  0.38639398  0.50930459 -0.499898868 
Burger   0.5757023 -0.04380176  0.26247227 -0.02813712  0.772635014 
Milk     0.3395696 -0.43080905 -0.83463952  0.04910000  0.007882237 
Oranges  0.2249898  0.79677694 -0.29160659  0.47901574 -0.005966796 
Tomatoes 0.5064340  0.28702846  0.01226602 -0.71270629 -0.391201387 
> summary(out2) 
Importance of components: 
                          PC1    PC2    PC3     PC4     PC5 
Standard deviation     1.5564 1.0510 0.8593 0.70257 0.49068 
Proportion of Variance 0.4845 0.2209 0.1477 0.09872 0.04815 
Cumulative Proportion  0.4845 0.7054 0.8531 0.95185 1.00000 
 

As we can see we get a different solution. Now, the weights for PC1 are more balanced. 
For the purpose of the example (CPI) this solution is probably better since we have no 
reason to give much more weight to Oranges than to the other food items.  
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PCA - Number of PC to extract 

Remember that the idea is to capture the main patterns explaining the variability 
in a data set using a small number of PC. Both topics (“main pattern” and “small 
number”) are linked together and depend on the problem under analysis. 

However there are some criteria that can be used when there is no clear answer 
to this question. 

o Kaiser criterion – keep PC whose eigenvalues are greater than 1 (scaled 
data) or greater than the average of all eigenvalues (non-scaled data). 
Mainly used with scaled data. 

o Scree-plot analysis – Plot the percent of variance accounted for by each PC 
and look for an elbow. Choose the value immediately before the elbow 
(used with both scaled and non-scaled data) or use the second differences. 

o Parallel analysis – Based on a simulation procedure (simulation will be 
discussed latter) that can be simplified using a table of constants (see 
sharma).  More efficient but less used as it is more difficult to compute. In R 
we can use some packages to get a parallel analysis: paran or psych for 
instance. 
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PCA - Example 2 – Food price index 

 Kaiser criterion: 

o Scaled data: retain the first 2 PC (remember that the eigenvalues are the 
square of the standard deviation of the principal components 

o Non-scaled data: retain the first 2 PC 
> lambda=out1$sdev^2; lambda 
[1] 218.998679  91.723169  37.662690  20.810541   3.029229 
> mean(lambda) 
[1] 74.44486 
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PCA - Example 2 – Food price index 

 Scree plot: left panel for centered data and right panel for scaled (and centered) 
data 

  

For non-scaled dat just replace out2 by out1  
> # scaled 
> lambda=out2$sdev^2 
> plot(lambda,type="b") 
> diff(lambda,lag=1,differences=2) 
[1]  0.951598697  0.121325148 -0.007976802 

Both scree plots are similar and recommend the use of 2 PC 



 

 37 

 

PCA - Example 2 – Food price index 

 Parallel analysis – Horn (1965) 

o Using paran 

> require(paran)     # package paran must be installed before  
> paran(x,iterations=100,graph=T) 
Using eigendecomposition of correlation matrix. 
Computing: 10%  20%  30%  40%  50%  60%  70%  80%  90%  100% 
Results of Horn's Parallel Analysis for component retention 
100 iterations, using the mean estimate 
 
--------------------------------------------------  
Component   Adjusted    Unadjusted    Estimated  
            Eigenvalue  Eigenvalue    Bias  
--------------------------------------------------  
1           1.791788    2.422467      0.630679 
--------------------------------------------------  
 
Adjusted eigenvalues > 1 indicate dimensions to retain. 
(1 components retained) 
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PCA - Example 2 – Food price index 
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PCA - How to interpret principal components? 

When possible retained PC can be interpreted using the loadings: The higher the 
loading (in absolute value) the more influence it had in the formation of the PC. 
But the main question is how high should the loading be before we can say that 
a given variable is influential in the formation of he PC. There are no clear 
answers to this question. In some applied work the value 0.5 or 0.6 for scaled 
data is used as a cutoff. 
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PCA - Example 2 – Food price index 

Back to the example, compute the loadings for each retained PC -  assuming 
scaled variables and that 2 PC are retained  

> cor(x,out2$x)    # Loadings 

               PC1         PC2   
Bread    0.7722197 -0.32437017   
Burger   0.8960392 -0.04603719   
Milk     0.5285156 -0.45279546  
Oranges  0.3501804  0.83744058  
Tomatoes 0.7882281  0.30167700   

 

Using 0.5 as the cutoff value, PC1 is the “non-fruits” CPI (stricly speaking 
tomatoe is a fruit but is usually considered as a vegetable) and PC2 is the “fruit” 
CPI we can interpret PC1. 
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PCA - Example 2 – Food price index 

If non-scaled data is used, there interprteation is more puzzling 

> cor(x,out1$x) 
                PC1        PC2 
Bread    0.16817616  0.6315875 
Burger   0.39199944  0.8014061 
Milk     0.08872954  0.6092695 
Oranges  0.97573973 -0.2114328 
Tomatoes 0.53642447  0.6650256 

 

PC1 linked to fruits (and vegetables) and PC2 linked to the remaining items. 
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PCA – Use of principal component scores 

PC scores can be plotted for further interpretting the results (but a clear 
interpretation is not guaranted). 

 

Broadly speaking we can identify 5 groups: 

 High fruit CPI and low non-fruit CPI:  Milwaukee, 
Cleveland, Detroit, Buffalo, Minneapolis,Dallas; 

 Avg fruit CPI and low non-fruit CPI : Houston, 
San Fr, Seattle, San Diego Kansas City; 

 Avg fruit CPI and low non-fruit CPI : LA, Wash, 
Baltimore, Atlanta; 

 Avg fruit CPI and avg non-fruit CPI : Pittsburgh, 
St Louis, Chicago, Philadelphia, Houston, 
Cincinanti; 

 Avg fruit CPI and High non-fruit CPI : New-York, 
Honolulu, 
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